Parameter Identification of Semicausal Model by Using Least-Squares Method
نویسندگان
چکیده
منابع مشابه
Least – Squares Method For Estimating Diffusion Coefficient
Abstract: Determination of the diffusion coefficient on the base of solution of a linear inverse problem of the parameter estimation using the Least-square method is presented in this research. For this propose a set of temperature measurements at a single sensor location inside the heat conducting body was considered. The corresponding direct problem was then solved by the application of the ...
متن کاملLEAST – SQUARES METHOD FOR ESTIMATING DIFFUSION COEFFICIENT
Determining the diffusion coefficient based on the solution of the linear inverse problem of the parameter estimation by using the Least-square method is presented. A set of temperature measurements at a single sensor location inside the heat conducting body is required. The corresponding direct problem will be solved by an application of the heat fundamental solution.
متن کاملculculation of scs infiltration equation by least-squares method
soil conservation service (scs) adjusted the kostiakovs infiltration model by adding a constant coefficient, for improvement of estimation. the improved model has three constant parameters, which are difficult to calculate. so scs has taken the third constant parameter as equal to 0.65-0.7 cm to simplify the estimation. this parameter varies in different soil and often outranges the scs estimat...
متن کاملVolterra filter identification using penalized least squares
Volterra lters have been applied to many nonlinear system identiication problems. However, obtaining good lter estimates from short and/or noisy data records is a diicult task. We propose a penalized least squares estimation algorithm and derive appropriate penalizing functionals for Volterra lters. An example demonstrates that penalized least squares estimation can provide much more accurate l...
متن کاملOptimization of Parameter Selection for Partial Least Squares Model Development
In multivariate calibration using a spectral dataset, it is difficult to optimize nonsystematic parameters in a quantitative model, i.e., spectral pretreatment, latent factors and variable selection. In this study, we describe a novel and systematic approach that uses a processing trajectory to select three parameters including different spectral pretreatments, variable importance in the projec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers
سال: 1988
ISSN: 0453-4654
DOI: 10.9746/sicetr1965.24.1328